

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Prepared by: Kavisha Yadav

GUESS PAPER

Electrical Engineering

II B.Tech. III Sem: 3EE4-06

Analog Electronics

Unit 1:

Short Answers:(2 Marks Each)	CO	BTL
Q. 1 Define Peak Inverse Voltage of Rectifiers.	CO-1	BTL-1
Q. 2 Define the meaning of ideal diode	CO-1	BTL-1
Q. 3 What is Clipper and Clamper Circuit	CO-1	BTL-1
Q. 4 Define Avalanche Breakdown and Zener Breakdown	CO-1	BTL-2
Q. 5 Why Zener Diode is used as Voltage Regulator?	CO-1	BTL-2
Q. 6 Difference between Series and Shunt Clipper	CO-1	BTL-1
Q.7 Difference between Positive and Negative Clamper	CO-1	BTL-1

Descriptive Answers: (4 to 10 Marks)

Q. 1 Explain and draw the circuit diagram of Full Wave Rectifier. Calculate Average and RMS Value of Output Voltage, efficiency, peak Inverse Voltage for Full Wave Bridge Rectifier.	CO-1	BTL-3
Q. 2 Explain Clamper Circuits along with its type	CO-1	BTL-1
Q. 3 Explain Clamping Circuits along with its types	CO-1	BTL-2
Q. 4 Explain Clipper and Clamper Circuits and its types with suitable diagrams.	CO-1	BTL-3
Q. 5 Draw and Explain the working of Bridge Rectifier with suitable diagram.		
Q.6 Explain the working of Half Wave Rectifier with suitable diagram.		BTL-2

REAP Code : 1011

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Q.7 Write a short note on: (i) Negative Clamper Circuit (ii) Series Clipper Circuit

CO-1

BTL-3

Q.8 Draw and explain the I-V Characteristics of an Ideal Diode.

CO-1

BTL-3

REAP Code : 1011

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Q.9 Explain the working of the Zener Diode along with its I-V Characteristics? What do you understand by Avalanche Breakdown and Zener Breakdown?	CO-1	BTL-2
Q.10 Explain Half Wave and Full Wave Rectifier. Explain its working along with suitable diagrams.	CO-1	BTL-3

Unit 2

Short Answers:(2 Marks Each)	CO	BTL
Q. 1 Draw structure and symbol of BJT with its basic features.	CO- 2	BTL-1 BTL-2
Q. 2 Write down 3 applications of BJT.	CO- 2	BTL-2
Q. 3 What is Small Signal Model of BJT?	CO- 2	BTL-1
Q. 4 Define Current Controlled Device and Voltage Controlled Device	CO- 2	BTL-1
Q. 5 What do you mean by Operating Point?	CO- 2	BTL-2
Q. 6 Explain the significance of Q-Point and its determination.	CO- 2 CO- 2 CO- 2 CO- 2	BTL-1

Descriptive Answers: (4 to 10 Marks)

REAP Code : 1011

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

<p>Q. 1 Explain BJT as a Switch in detail.</p> <p>Q. 2 Explain BJT as an Amplifier in detail.</p> <p>Q. 3 What are the different BJT biasing techniques. Explain anyone in brief.</p> <p>Q. 4 Mention difference between BJT and MOSFET.</p> <p>Q. 5 Explain the following: (i)Fixed Bias (Base Bias) (ii) Emitter Bias (iii)Collector Feedback Bias of BJT</p> <p>Q.6 Derive Hybrid Pi Model of BJT with suitable diagram.</p> <p>Q.7 Derive and explain Pi-Model of BJT along with suitable diagram.</p> <p>Q.8 Write a short note on: (i)Advantages of Transistor (ii) Operating Point (iii) Current Mirror</p> <p>Q.9 Explain Current Mirror and its Configurations with suitable diagram.</p> <p>Q.10 Explain Common Emitter Configuration of BJT in detail.</p>	CO-	BTL-3
	2	BTL-3
	CO-	
	2	
		BTL-4
	CO-2	

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

REAP Code : 1011

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Q.11 Explain Common Collector and Common Base Configuration of BJT.

Q12. For given Fixed Bias Configuration of BJT, Calculate I_c , V_{cc} , R_b and β . If $I_b=20\mu A$, $R_c=2.7k\Omega$, $V_{ce}=7.2V$, $I_e=4mA$?

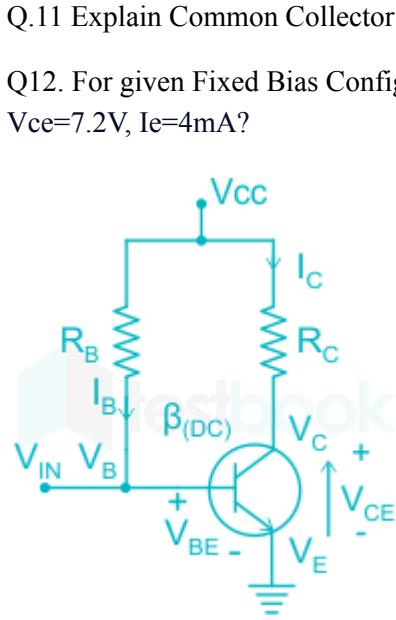
CO-2 BTL-3

CO- BTL-3

2 BTL-1,4

CO-

2


BTB-3

CO-2

Q.13 Explain Small Signal Equivalent Circuit in detail.

Q.14 Explain High Frequency Equivalent Circuit in detail.

Q15. Draw and Explain Structure and I-V Characteristics of BJT with suitable diagram.

Unit 3

Short Answers:(2 Marks Each)

CO BTL

Q. 1 Difference between BJT and MOSFET.

CO- BTL-2

Q. 2 Difference between FET and MOSFET

3 BTL-2

Q. 3 Difference between Enhancement Type and Depletion type MOSFET

CO- BTL-1

Q.4 Define Small Signal Model of MOSFET.

CO- 3

CO- 3

Q. 5 Define Pinch off Voltage for MOSFET.

CO-3 BTL-2

Q.7 Why MOSFET is called as Voltage Controlled Device?

CO-3 BTL-2

Q.8 Differentiate between BJT and FET

CO-3 BTL-2

REAP Code : 1011

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Q. 9 Which MOSFET is called as Normally ON MOSFET and Normally OFF MOSFET?

Why?

Q. 10 Describe Transition and Diffusion Capacitance in PN Junction Diode?

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Descriptive Answers: (4 to 10 Marks)

Q. 1 Explain the construction and characteristic of N-Channel depletion type MOSFET along with its working? Draw its drain and transfer characteristics. Also define Pinch off Voltage.

CO-3

BTL-3

Q. 2 Mention the difference between Transistor and MOSFET.

Q. 3 Explain how MOSFET works as Switch in detail.

Q. 4 Explain how MOSFET works as an Amplifier in detail.

Q. 5 What are the different biasing techniques used in MOSFET. Explain anyone in detail.

Q.6 Write a short note on: (i) Common Source Amplifier (ii) Common Gate Amplifier
(iii) Common Drain Amplifier

Q.7 Explain Small Signal Equivalent Circuit and derive the following: (i) Gain (ii)
Input Impedance (iii) Output Impedance (iv) Transconductance

CO-3

BTL-2

Q.8 Explain High Frequency Equivalent Circuit of MOSFET in detail.

Q.9 Draw and Explain Structure and I-V Characteristics of MOSFET.

REAP Code : 1011

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Unit 4:

Short Answers:(2 Marks Each)

	CO	BTL
Q. 1 Explain the operation of a Differential Amplifier.	CO-4	BTL-2
Q. 2 Define the concept of Virtual Ground.	4	BTL-2
Q. 3 Difference Between Voltage Amplifier and Power Amplifier	CO-4	BTL-2
Q. 4 How Current Amplifier differ from Power Amplifier.	4	BTL-3
Q. 5 What are the applications of Differential Amplifier?	CO-4	
Q. 6 Write down 2 advantages and disadvantages of Class A Power Amplifier.	4	
Q. 7 Write down Advantages and disadvantages of Class B Amplifier.	CO-4	BTL-2
Q. 8 What are the different types of Coupling used in Multistage Amplifier.	4	
Q. 9 Define Voltage Follower and Slew Rate with the help of an Op-Amp.		
Q. 10 How does an Oscillator differ from an Amplifier	CO-4	

REAP Code : 1011

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Descriptive Answers: (4 to 10 Marks)

Q. 1 What is the purpose of Multistage Amplifier?	CO-4	BTL-1,3
Q. 2 Define the following electrical Parameters of Op-Amp (i) Input Bias Current (ii) Input Offset Current (iii) Slew Rate (iv) CMRR (v) Output Offset Voltage (vi) Gain Bandwidth Product		
Q. 3 What is Cascading or Multistage amplifier? Explain the need for cascading of amplifiers also discuss effect of cascade amplifier on bandwidth?	CO-4	BTL-4
Q. 4 (i) Describe concept of Stability and Margin. (ii) What is meant by Cross Over Distortion in Class B Amplifier? Explain how it is overcome in Class AB Amplifier/	CO-4	BTL-2
Q. 5 Explain the classification of Power Amplifier on the basis of operating point?	CO-4	BTL-2
Q. 6 Write a short note on: (i) Frequency Distortion (ii) Phase Distortion (iii) Harmonic Distortion (iv) Cross Over Distortion		
Q. 7 Draw and Explain characteristics of Class A Power Amplifier along with suitable diagram?		
Q. 8 Explain the working of Transformer Coupled Class A Amplifier?		
Q. 9 A Transformer Coupled Class A amplifier supplies 3 watt Power to Speaker. If supply voltage is 30 volts & I_{CQ} is 200mA then find efficiency of this amplifier?	CO-4	BTL-2
Q. 10 Differentiate between Single Ended Class B Amplifier and Push-Pull Class B Amplifier?		
Q. 11 Explain the working of Class AB Amplifier with suitable diagram. List out advantages, disadvantages and applications of Class AB Amplifier.		
Q. 12 Explain Characteristics of an Ideal Op-Amp in detail.		
Q. 13 Explain Non-Idealities in an Op-Amp in detail.		

REAP Code : 1011

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Unit 5 & Unit 6:

Short Answers:(2 Marks Each)

CO

BTL

Q. 1 What is Integrator and What are the application of Integrator?	CO-5	BTL-1
Q. 2 Write down the characteristics of an Ideal Op-Amp?	CO-5	BTL-1
Q. 3 Define the concept of Virtual Ground	CO-5	BTL-4
Q. 4 What are the types of Analog to digital Converter? Which Analog to digital Converter is best for conversion?	CO-5	BTL-4
Q. 5 Define Filter? What is the difference between Active Filters and Passive Filters.	CO-5	BTL-4
Q. 6 What are the applications hysteretic comparator?	CO-5	
Q. 7 What are the applications of Peak Detector?	CO-5	
Q. 8 What is the function of Precision Rectifier?		
Q. 9 What is the purpose of Monoshot?		BTL-3
Q. 10 What is the purpose of Astable Multivibrator?	CO-5	

Descriptive Answers: (4 to 10 Marks)

Q. 1 What is Analog to Digital Conversion. Explain any one of its conversion techniques along with circuit diagram.	CO-5	BTL-1
Q. 2 Draw the circuit diagram of Wein Bridge Oscillator using Op-Amp and Frequency of Oscillator?	CO-5	BTL-2
Q. 3 Draw the circuit diagram of Op-Amp Integrator and derive the output expression.	CO-5	BTL-4
Q. 4 Write Short Note on: (i) Differential Amplifier (ii) Ideal Op-Amp Characteristics (iii) Instrumentation Amplifier		
Q. 5 Connect the Op-Amp in Non-Inverting Mode of operation & deduce the expression for its closed loop gain.		
Q. 6 (a) Draw the circuit of Op-Amp Integrator and derive the output expression. (b) A 10mV, 2kHz sinusoidal signal is applied to input of Op-Amp Integrator for which R1= 100kohm & C1= 1microF. Find output Voltage.		
Q. 7 Define the following with respect to Performance Characteristics of ADC. (i) Resolution (ii) Accuracy	CO-5	BTL-2
Q. 8 Write a short note on: Zero Crossing Detector	CO-5	BTL-2
Q. 9 Draw and Explain Square Wave Generator in detail		
Q. 10 Explain the working of Square Wave Generator and Triangular Wave Generator.		

ARYA College of Engineering (ACE)

Previously Known as Arya Institute of Engineering & Technology (AIET)

(Affiliated to RTU
Approved by AICTE, New Delhi)

- Main Campus, SP-40, RIICO Industrial Area, Delhi Road
Kukas, Jaipur - 302028 | Tel Ph. 0141-2820700

- www.aryacollegejpr.com
- Toll Free : 1800 102 1044

Q. 11 Write a short note on: (i) Half Wave Precision Rectifier (ii) Full Wave Precision Rectifier

Q. 12 Explain the working of Peak Detector using suitable circuit diagram.

Q. 13 Explain the working of Monostable Multivibrator using Op-Amp.

Q. 14 Explain the working of Astable Multivibrator with suitable diagram.

Q. 15 Write a short note on: (i) Non-Inverting Zero Cross Detector (ii) Inverting Zero Crossing Detector

Q. 16 Derive the expression for closed loop Inverting Amplifier, Non-Inverting Amplifier , Differentiator and Integrator with the help of an Op-Amp.